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1 Introduction

Log-linear models are widely used in speech and

language processing and IR, sometimes under the

guise of “maximum entropy”. When used for

binary classification, they are known as logistic

regression models.

In information extraction or retrieval tasks (e.g.

Ittycheriah et al. 2003, Greiff and Ponte 2000),

logistic regression classifiers are evaluated in terms

of precision, recall, and F-measure.

Classifier training should be informed by the

evaluation criterion. This paper describes a

procedure that maximizes expected F-measure.



2 Logistic Regression

Binary response variable Y over {−1, +1}. Vector
~X = (X1, . . . , Xk) of k explanatory variables.

Y ∼ Bernoulli(p)

i.e. Pr(Y = +1 | ~X = (x1, . . . , xk), ~θ) = p

where logit(p) = θ0 + x1 θ1 + · · ·+ xk θk

let ~x = (1, x1, . . . , xk)

then Pr(+1 | ~x, ~θ) =
1

1 + exp(−~x · ~θ)

Here, ~θ is a k + 1-dimensional vector of parameters.



3 F-Measure

Maximum a posteriori (MAP) decision rule:

ymap(~x | ~θ) = argmax
y

Pr(y | ~x, ~θ) = sgn
(
~x · ~θ

)
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Let JφK = 1 if Boolean expression φ is true, and 0

otherwise. Given an evaluation data set

(~x1, y1), . . . , (~xn, yn):

hits A(~θ) =

n∑
i=1

r
ymap(~xi | ~θ) = +1

z
Jyi = +1K

misses B(~θ) =

n∑
i=1

r
ymap(~xi | ~θ) = −1

z
Jyi = +1K

false alarms C(~θ) =

n∑
i=1

r
ymap(~xi | ~θ) = +1

z
Jyi = −1K

Fα(~θ) =
A(~θ)

α [A(~θ) + B(~θ)] + (1− α) [A(~θ) + C(~θ)]



4 Relation to Expected Utility

It exists. See the paper for details.

5 Discriminative Estimation

The goal is to estimate ~θ as

~θ? = argmax
~θ

Fα(~θ)

Problem: Fα(~θ) is defined in terms of A(~θ) (etc.),

which depends on ~θ via the step function J·K
(Kronecker delta). This means that the gradient

of Fα(~θ) is zero almost everywhere.



The key idea of our solution is to replace the

discontinuous step function J·K in
r
ymap(~xi | ~θ) = +1

z
=

r
Pr(+1 | ~x, ~θ) > 0.5

z

with a continuous approximation
r
Pr(+1 | ~x, ~θ) > 0.5

z
≈ Pr(+1 | ~x, ~θ)

In the case of logistic regression, this amounts to

approximating the limit

lim
γ→∞

1

1 + exp(−γ ~x · ~θ)
=

r
Pr(+1 | ~x, ~θ) > 0.5

z

with a term where γ = 1 (different values of γ

could be used as well).



In particular, approximate

A(~θ) ≈ Ã(~θ) =

n∑
i=1

yi=+1

1

1 + exp(−~xi · ~θ)
(expected hits)

and

A(~θ) + C(~θ) = mpos(~θ) ≈ m̃pos(~θ) =

n∑
i=1

1

1 + exp(−~xi · ~θ)

to obtain the relaxed optimization objective:

F̃α(~θ) =
Ã(~θ)

α npos + (1− α) m̃pos(~θ)



Maximization of F̃α as can be carried out

numerically using conjugate gradient search or

quasi-Newton methods such as the BFGS

algorithm. This requires the evaluation of partial

derivatives.

One can compute the value of F̃α(~θ) and its

gradient ∇F̃α(~θ) simultaneously at a given point ~θ

in O(n k) time and O(k) space. Pseudo-code for

such an algorithm and formulas for the gradient

can be found in the paper.



6 Comparison with MLE

A graphical comparison with maximum

likelihood estimation (MLE) is

instructive. Consider the toy dataset

shown on the right. The logistic

regression model simplifies to:

Pr(+1 | x, θ0, θ1) =
1

1 + exp(−θ0 − x θ1)

x y

0 +1

1 −1

2 +1

3 +1

The log-likelihood function L is

L(θ0, θ1) = log Pr(+1 | 0, θ0, θ1) + log Pr(−1 | 1, θ0, θ1)

+ log Pr(+1 | 2, θ0, θ1) + log Pr(+1 | 3, θ0, θ1)



Log-likelihood is a concave function:

L(θ0, θ1)
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But F̃α is, in general, not concave:

F0.5(θ0, θ1)
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Notice that α = 0.25 gives a different maximum:

F0.25(θ0, θ1)
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7 Evaluation

Evaluation on a speech summarization task

(Maskey & Hirschberg 2005): extractive

summarization by classifying each sentence of a

broadcast with an include or exclude label.

Dataset with 29 mostly integer- or real-valued

explanatory variables. Trained on 3,535 instances,

evaluated on 408 instances.

Method R P Fα=0.5

MLE 24/99 24/33 0.3636

F̃α=0.5 85/99 85/211 0.5484

Further details can be found in the paper.



8 Conclusions

This presentation describes discriminative training

of logistic regression classifiers by maximizing a

relaxed version of F-measure expressed in terms of

the expectations of hits, misses, and false alarms.

The assumption about the class of models

(logistic regression) is not crucial: the same

technique applies to many other kinds of models.

Maximizing F-measure during training seems

especially well suited for dealing with skewed

classes, where predicting the majority class would

result in high accuracy, but low F-measure.
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