
Dynamic Semantics Lite

Martin Jansche

Linguistics 780
October 27, 1998

As an appetizer, we will review the semantics of Predicate Logic in Section 1.
In Section 2 we digest the first order system of Dynamic Predicate Logic.
In Section 3 we order more.

1 Predicate Logic

A model of a particular language of First-Order Predicate Logic (PL) is the
usual pair 〈D,F 〉 consisting of a domain and an interpretation function that
respects the choice of non-logical constants of the language. The semantics
of a particular language of PL is stated with respect to such a model M and
the set V of variables used in the language.

Terms are interpreted with respect to a model M = 〈D,F 〉 and an
assignment function g ∈ DV :

Definition 1 (interpretation of terms)
1. [[c]]M,g := F (c) iff c is a constant

2. [[v]]M,g := g(v) iff v is a variable

Formulas are assigned truth-conditions rather than truth values:

Definition 2 (PL interpretation of atomic formulas)
1. PL[[R

nt1 . . . tn]]M := {g ∈ DV | 〈[[t1]]
M,g, . . . , [[tn]]M,g〉 ∈ F (R)}

2. PL[[t1 = t2]]
M := {g ∈ DV | [[t1]]

M,g = [[t2]]
M,g}

3. PL[[⊤]]M := DV

4. PL[[⊥]]M := ∅

1



Definition 3 (PL interpretation of propositional connectives)
1. PL[[¬φ]]M := DV \ PL[[φ]]M

2. PL[[(φ ∧ ψ)]]M := PL[[φ]]M ∩ PL[[ψ]]M

3. PL[[(φ ∨ ψ)]]M := PL[[φ]]M ∪ PL[[ψ]]M

4. PL[[(φ→ ψ)]]M := (DV \ PL[[φ]]M) ∪ PL[[ψ]]M

To interpret the first-order quantifier symbols we need to define a relation
that holds between sufficiently similar assignment functions:

Definition 4 (similarity of assignment functions)
For any x ∈ V define the relation [x] on DV to be

{〈g, h〉 ∈ (DV ×DV ) | ∀v ∈ (V \ {x}) g(v) = h(v)}.

Of two assignment functions g, h ∈ DV such that g[x]h we say that g is
identical to h except for possibly assigning a different value to x.

Now we can interpret the quantified formulas of PL:

Definition 5 (PL interpretation of quantified formulas)
1. PL[[∃xφ]]M := {g ∈ DV | ∃h(g[x]h ∧ h ∈ PL[[φ]]M)}

2. PL[[∀xφ]]M := {g ∈ DV | ∀h(g[x]h→ h ∈ PL[[φ]]M)}

At this point we introduce the derived notion of truth:

Definition 6 (PL truth and validity)
1. φ is true (false) in a model M with respect to g, written M, g |= φ

(M, g 6|= φ), iff it is (not) the case that g ∈ PL[[φ]]M .

2. φ is true in a model M , written M |= φ, iff PL[[φ]]M = DV .

3. φ is false in a model M , written M 6|= φ, iff PL[[φ]]M = ∅.

4. φ is valid (a contradiction), written |= φ ( 6|= φ), iff it is true (false) in
all models.

Finally, note an important fact that will figure prominently in a following
proof and in the comparison of PL and DPL.

Fact 1 |= ∀x(φ→ ψ) iff |= ∃xφ→ ψ provided x is not free in ψ.
(See e.g. [H82, p. 50] or [GS91, §3.4].)

2



Whereas this equivalence holds only in PL if the variable bound in the
antecedent does not occur freely in the consequent, that last proviso can
be dropped in the system of Dynamic Predicate Logic, which was explicitly
designed to account for so-called sage-plant anaphora.

2 First order: Dynamic Predicate Logic

2.1 Semantics of DPL

Dynamic Predicate Logic (DPL) differs from classical (static) Predicate
Logic in that it uses a different active ingredient. While PL[[ ]]M is a function
L→℘(DV ) that maps formulas of Predicate Logic to sets of assignment func-
tions, the semantics of DPL is given in terms of sets of pairs of assignment
functions by a function DPL[[ ]]M :L→ ℘(DV ×DV ).

Note that Groenendijk and Stokhof [GS91] insist on the two functions
having the same domain, i.e., DPL and PL assign potentially different de-
notations to the formulas of a language of Predicate Logic. However, in
order to keep things compatible with Dynamic Montague Grammar [GS90]
in Section 3, I’ll use different symbols for the DPL connectives, giving it
implicitly a slightly different syntax from that of PL.

For each well-formed DPL formula φ its denotation DPL[[φ]]M can be
seen as a relation on the set DV . Intuitively, the relation holds between two
assignment functions (members of DV ) if the second is the result of updating
the information encoded in the first with the information contained in φ. For
ease of exposition, I’ll drop all sub- and superscripts and simply write [[φ]]
for the DPL denotation of φ relative to some relevant model. We can then
talk about two assignment functions being related by writing e.g. g[[φ]]h,
meaning that g can be continued successfully with φ resulting in h.

The central notion of all dynamic theories of meaning is that conjunction
is interpreted as some sort of sequencing operation. In the relational seman-
tics of DPL, dynamic conjunction ; (written ∧ in [GS91]) is interpreted as
relational composition:

Definition 7 (DPL interpretation of conjunction)
[[(φ ; ψ)]] := [[ψ]] ◦ [[φ]], or in other terms, g[[(φ ; ψ)]]h iff ∃j(g[[φ]]j ∧ j[[ψ]]h).

Since relational composition is associative but not commutative, so (and
neither, respectively) is dynamic conjunction.

The transportation of information via assignment functions is already
very reminiscent of Heim’s [H82] File Change Semantics (FCS). As in FCS,
an atomic formula will serve to eliminate incompatible assignment functions,

3



retaining only those that already support the (static) meaning of the for-
mula. For example, [[Mx]] lets all assignment functions that map x to some
entity in the extionsion of M pass through unaltered, filtering out all incom-
patible assignments. In general, an atomic formula α denotes some partial
identity relation on DV :

Definition 8 (DPL interpretation of atomic formulas)

DPL[[α]]M := ∆ PL[[α]]M , where ∆X := {〈x, y〉 ∈ (X × X) | x = y}, or in
other tems, g[[α]]h iff g = h and g ∈ PL[[α]].

Before we introduce more connectives, let’s think about how to define the
usual notions of truth and validity:

Definition 9 (DPL truth and validity)
1. φ is true (false) in a model M with respect to g, written M, g |= φ

(M, g 6|= φ), iff it is (not) the case that ∃h g[[φ]]h.

2. φ is true in a model M , written M |= φ, iff the relation [[φ]] is serial.

3. φ is false in a model M , written M 6|= φ, iff the relation [[φ]] is empty.

4. φ is valid (a contradiction), written |= φ ( 6|= φ), iff it is true (false) in
all models.

The notion of truth with respect to an assignment can be grammaticized and
integrated into the syntax as a new connective, namely ♦ (read “might”):

Definition 10 (DPL interpretation of continuation modality)

DPL[[♦φ]]M := ∆{g ∈ DV | M, g |= φ}, or in other terms, g[[♦φ]]h iff g = h
and ∃j g[[φ]]j.

Because of the fact that |= ♦♦φ iff |= ♦φ, the connective ♦ defines a closure
operation. Note that we could do the converse and define |= in terms of ♦:
M |= φ iff DPL[[♦φ]]M = ∆(DV ).

Analogous to the notion of truth corresponding to a modality expressing
the possibility of a successful continuation, we can also introduce a modal-
ity corresponding to falsehood into the syntax. We write ∼φ (where Groe-
nendijk and Stokhof [GS91] have ¬φ) to mean that any attempt to con-
tinue with φ would fail. This new connective is often called static negation,
as it performs a static closure over its argument in addition to its truth-
conditional impact.

4



Definition 11 (DPL interpretation of static negation)

DPL[[∼φ]]M := ∆{g ∈ DV | M, g 6|= φ}, or in other terms, g[[∼φ]]h iff g = h
and ¬∃j g[[φ]]j.

In fact, ♦ is now dispensable. We could define ♦φ :≡ ∼∼φ, because of the
following observation:

Fact 2 |= ♦φ iff |= ∼∼φ.

Proof

g[[∼∼φ]]h ⇔ g = h ∧ ¬∃j g[[∼φ]]j
⇔ g = h ∧ ¬∃j(g = j ∧ ¬∃k g[[φ]]k)
⇔ g = h ∧ ∀j¬(g = j ∧ ¬∃k g[[φ]]k)
⇔ g = h ∧ ∀j(g = j → ∃k g[[φ]]k)
⇔ g = h ∧ ((∃j g = j) → ∃k g[[φ]]k)
⇔ g = h ∧ ∃k g[[φ]]k

If a formula φ is atomic or of the form ∼ψ or ♦ψ we find that [[φ]] ⊆ ∆(DV ).
Whenever a formula has this property, we call it a test.

Just as ∧ and ¬ form the basis for defining all other PL connectives, so
do ; and ∼ for DPL.

Definition 12 (DPL definition of propositional connectives)
1. (φ ⇒ ψ) :≡ ∼(φ ; ∼ψ) (Groenendijk and Stokhof [GS91] have (φ →
ψ))

2. (φ or ψ) :≡ (∼φ⇒ ψ) (Groenendijk and Stokhof [GS91] have (φ ∨ ψ))

Let’s see how the semantics of internally dynamic implication ⇒ works:

g[[φ⇒ ψ]]h ⇔ g[[∼(φ ; ∼ψ)]]h
⇔ g = h ∧ ¬∃j g[[(φ ; ∼ψ)]]j
⇔ g = h ∧ ¬∃j∃k(g[[φ]]k ∧ k[[∼ψ]]j)
⇔ g = h ∧ ¬∃j∃k(g[[φ]]k ∧ k = j ∧ ¬∃l k[[ψ]]l)
⇔ g = h ∧ ∀j∀k((g[[φ]]k ∧ k = j) → ∃l k[[ψ]]l)
⇔ g = h ∧ ∀k(∃j(g[[φ]]k ∧ k = j) → ∃l k[[ψ]]l)
⇔ g = h ∧ ∀k((g[[φ]]k ∧ ∃j k = j) → ∃l k[[ψ]]l)
⇔ g = h ∧ ∀k(g[[φ]]k→ ∃l k[[ψ]]l)

Note that we could in principle define externally dynamic implication as
g[[φ ⇛ ψ]]h ⇔ ∀k(g[[φ]]k → k[[ψ]]h). Then it would be possible to define
(φ⇒ ψ) :≡ ♦(φ ⇛ ψ).

5



Disjunction is completely static:

g[[(φ or ψ)]]h ⇔ g[[(∼φ⇒ ψ)]]h
⇔ g = h ∧ ∀k(g[[∼φ]]k → ∃l k[[ψ]]l)
⇔ g = h ∧ ∀k((g = k ∧ ¬∃j g[[φ]]j) → ∃l k[[ψ]]l)
⇔ g = h ∧ (∃k(g = k ∧ ¬∃j g[[φ]]j) → ∃l g[[ψ]]l)
⇔ g = h ∧ (¬¬∃j g[[φ]]j ∨ ∃l g[[ψ]]l)
⇔ g = h ∧ ∃j(g[[φ]]j ∨ g[[ψ]]j)

The following important fact illustrates the close connection between dy-
namic conjunction and implication:

Fact 3 |= (φ⇒ (ψ ⇒ χ)) iff |= ((φ ; ψ) ⇒ χ).

Proof

g[[(φ⇒ (ψ ⇒ χ))]]h
⇔ g = h ∧ ∀j(g[[φ]]j → ∃k j[[(ψ ⇒ χ)]]k)
⇔ g = h ∧ ∀j(g[[φ]]j → ∃k(j = k ∧ ∀l(j[[ψ]]l→ ∃m l[[χ]]m)))
⇔ g = h ∧ ∀j(g[[φ]]j → ∀l(j[[ψ]]l→ ∃m l[[χ]]m))
⇔ g = h ∧ ∀l ∀j(g[[φ]]j → (j[[ψ]]l→ ∃m l[[χ]]m))
⇔ g = h ∧ ∀l ∀j((g[[φ]]j ∧ j[[ψ]]l) → ∃m l[[χ]]m)
⇔ g = h ∧ ∀l(∃j(g[[φ]]j ∧ j[[ψ]]l) → ∃m l[[χ]]m)
⇔ g = h ∧ ∀l(g[[(φ ; ψ)]]l → ∃m l[[χ]]m)
⇔ g[[((φ ; ψ) ⇒ χ)]]h

Finally let’s look at quantified formulas. These require the auxiliary notion
of a variable update. We write g[[⊕x]]h to indicate that the assignment
function h is just like g except that any information about the value of
the variable x is lost (because of this, ⊕x is occasionally called to bring
about an information downdate) and a new information regarding x can be
accumulated afterwards.

Definition 13 (DPL interpretation of variable update)
[[⊕x]] := [x].

Quantification is defined in terms of variable update and the internally dy-
namic connectives:

Definition 14 (DPL definition of quantifiers)
1. Exφ :≡ (⊕x ; φ) (Groenendijk and Stokhof [GS91] have ∃xφ)

2. Axφ :≡ (⊕x⇒ φ) (Groenendijk and Stokhof [GS91] have ∀xφ)

6



Now we are in a position to digest the key equivalence of DPL.

Fact 4 |= Ax(φ⇒ ψ) iff |= (Exφ⇒ ψ).

Proof

Ax(φ⇒ ψ) ≡ (⊕x⇒ (φ⇒ ψ))
≡ ((⊕x ; φ) ⇒ ψ)
≡ (Exφ⇒ ψ)

The above equivalence provides a formal counterpart to the alleged equiva-
lence of sage-plant sentences such as the following:

• If Rose-Marie1 buys a2 sage-plant, she1 eats it2.

• Every sage-plant that Rose-Marie1 buys she1 eats.

Compare what Ax(φ ⇒ ψ) means with the meaning of a universally quan-
tified formula in FCS [H82, p. 363f.]:

a[[Ax(φ⇒ ψ)]]z ⇔ a[[((⊕x ; φ) ⇒ ψ)]]z
⇔ a = z ∧ ∀b′(a[[(⊕x ; φ)]]b′ → ∃c b′[[ψ]]c)
⇔ a = z ∧ ∀b′(∃b(a[[⊕x]]b ∧ b[[φ]]b′) → ∃c b′[[ψ]]c)
⇔ a = z ∧ ∀b∀b′((a[x]b ∧ b[[φ]]b′) → ∃c b′[[ψ]]c)

2.2 Problems with DPL

Many familiar properties of classical Predicate Logic are lost. For example:

1. DPL entailment is not reflexive, e.g., (Px ; ExQx) ⇒ (Px ; ExQx) is
not a valid DPL formula, which becomes more transparent if we write
it equivalently as (Px ; EyQy) ⇒ (Py ; EzQz).

2. DPL entailment isn’t transitive either.

3. Renaming of variables isn’t easy, since they can be bound an un-
bounded distance to the right of an existential quantifier. Moreover,
[[ExPx]] 6= [[EyPy]].

A proof theory for DPL is developed in [vE98].
Apart from the above technical problems, DPL has the following more

fundamental deficiencies:

7



1. Like many other dynamic semantic theories it assumes that indexation
of pronouns is done by some component prior to semantic interpreta-
tion. This is not easily remedied.

2. DPL semantics is based on the näıve assumption that pairs of sage-
plant sentences such as ‘If a farmer owns a sage-plant, he waters it’
and ‘Every farmer who owns a sage-plant waters it’ are identical in
meaning. Kamp makes the same assumption, only Heim doesn’t.

3. Constraints on (un)familiarity of (in)definites à la Heim are missing.

4. Although DPL has a compositional semantics, its only important ad-
vantage over FCS is its clarity, perspicuity, and lucidity. A higher-
order logic is needed to fully implement the compositional program.
A system that tries to do that is Dynamic Montague Grammar.

3 Second order: Dynamic Montague Grammar

3.1 Introductory polemic

In their influential paper [GS82] Groenendijk and Stokhof gave a presenta-
tion of a semantics for questions whose clarity and lucidity stemmed to a
large extent from their use of Ty2 rather than IL as the underlying logic.
Ty2 makes quantification over indices (expressions of type s) explicit, and
although it seems to be more verbose than Montague’s IL, having the addi-
tional baggage around is actually a virtue, for IL carries it too but tries to
hide it in the semantics.

In their equally influential paper [GS90] however, neither Groenendijk
nor Stokhof seemed particularly keen on keeping up with the clarity and
lucidity of their earlier work. Rather than making the complex interactions
of states and discourse markers explicit in the underlying logic, they chose
to hide it in the semantics of DIL, the Dynamic Intensional (a misnomer,
as they readily admit) Logic behind Dynamic Montague Grammar (DMG).
The only excuse for this obfuscation might be that they wanted to present
DMG along the same lines as Montague Grammar was first presented.

For those of you already familiar with DMG based on DIL, the two
key differences to the version of DMG I’m about to present (based on the
higher-order logic TyME) are the absence of states and the strict exten-
sionality. TyME replaces DIL’s states (expressions of type s) with explicit
assignment functions (of type m→ e) that assign individuals to discourse
markers. Whereas DIL formulas are interpreted with respect to a designated

8



state, TyME formulas aren’t, and as a consequence propositions have type
(m→ e) → t in TyME, corresponding to t in DIL, where we make explicit
that the truth of the proposition depends on a state (assignment) of type
m→ e.

3.2 TyME

The extensional typed language TyME is in all but minor respects identical
to Ty2. In addition to a type t for truth values, TyME has two other basic
types, e for entities and m for discourse markers. Moreover, we introduce
the following type abbreviations:

• s abbreviates m→ e, the type of states or assignment functions

• p abbreviates s→ t or (m→ e) → t, the type of static propositions

• d abbreviates p→p or ((m→e)→t)→(m→e)→t, the type of dynamic
propositions

Semantically TyME is, for my taste, superior to DIL, as it can be defined
entirely in terms of equality, abstraction, and application in the usual man-
ner and doesn’t need the postulates that DIL uses in order to incorporate
the notion of a state.

3.3 Some definitions and some facts

Definition 15 (uparrow)
If neither p nor g occurs freely in φ:

↑ : p→ d
↑ : p→ (p→ p)
↑ : (s→ t) → ((s→ t) → s→ t)

↑φ := λp. λg. (φ(g) ∧ p(g))

Definition 16 (downarrow)
↓ : d→ p
↓ : (p→ p) → p
↓ : ((s→ t) → s→ t) → s→ t

↓Φ := Φ(λg.⊤)

Fact 5 (↓↑-elimination) ↓↑φ = φ

9



Proof

↓↑φ
= ↓(λp. λg. (φ(g) ∧ p(g)))
= [λp. λg. (φ(g) ∧ p(g))](λh.⊤)
→β λg. (φ(g) ∧ [λh.⊤](g))
→β λg. (φ(g) ∧ ⊤)
= λg. φ(g)
→η φ

Fact 6 (failure of ↑↓-elimination) ↑↓Φ 6= Φ

Proof

↑↓Φ
= ↑(Φ(λh.⊤))
= λp. λg. (Φ(λh.⊤)(g) ∧ p(g))

Set Φ := λp′. λg′. (φ(g′) ∧ p′(k)), then continue:

= λp. λg. ([λp′. λg′. (φ(g′) ∧ p′(k))](λh.⊤)(g) ∧ p(g))
→β λp. λg. ([λg

′. (φ(g′) ∧ [λh.⊤](k))](g) ∧ p(g))
→β λp. λg. ((φ(g) ∧ [λh.⊤](k)) ∧ p(g))
→β λp. λg. ((φ(g) ∧ ⊤) ∧ p(g))
= λp. λg. (φ(g) ∧ p(g))
=α λp′. λg′. (φ(g′) ∧ p′(g′))

Definition 17 (static negation)
If g does not occur freely in Φ:

∼ : d→ d
∼ : (p→ p) → (p→ p)
∼ : ((s→ t) → s→ t) → (s→ t) → s→ t

∼Φ := ↑(λg.¬[↓Φ](g))

N.B.: If ¬ would denote generalized negation, we could say ∼Φ := ↑¬↓Φ.

Definition 18 (dynamic conjunction)
If p does not occur freely in Φ or Ψ:

; : d→ d→ d
; : (p→ p) → (p→ p) → p→ p

Φ ; Ψ := λp.Φ(Ψ(p))

10



Definition 19 (update)
What it means to update an assignment function:

update : m→ e→ s→ s
update : m→ e→ (m→ e) →m→ e

update(d)(x)(g)(d′) := g(d′) provided d 6= d′

update(d)(x)(g)(d) := x

Generously add syntactic sugar: {x/d}g := update(d)(x)(g)

Definition 20 (dynamic existential quantifier)
If none of p, g, x occurs freely in Φ:

E : m→ d→ d
E : m→ (p→ s→ t) → p→ s→ t

EdΦ := λp. λg. ∃xΦ(p)({x/d}g)

Definition 21 (remaining connectives)
1. internally dynamic implication: (Φ ⇒ Ψ) := ∼(Φ ; ∼Ψ)

2. static disjunction: (Φ or Ψ) := (∼Φ ⇒ Ψ)

3. static universal quanitifier: AdΦ := ∼Ed∼Φ

Fact 7 (EdΦ ⇒ Ψ) = Ad(Φ ⇒ Ψ)

3.4 Dynamic Montague Grammar

Definition 22 (translation of basic expressions)
f(ai) := λP. λQ. Edi(P (di) ; Q(di))
f(man) := λd. ↑λg.man(g(d)) = λd. λp. λg. (man(g(d)) ∧ p(g))
f(walks) := λd. ↑λg.walk(g(d))
f(hei) := λQ.Q(di)
f(talks) := λd. ↑λg. talk(g(d))

f(a1 man) = λQ. Ed1([λd. λp. λg. (man(g(d)) ∧ p(g))](d1) ; Q(d1))
= λQ. Ed1(λp. λg. (man(g(d1)) ∧ p(g)) ; Q(d1))

11



f(a1 man walks)
= Ed1(λp. λg

′. (man(g′(d1)) ∧ p(g′)) ; [λd′′. λp′′. λg′′. (walk(g′′(d′′)) ∧ p′′(g′′))](d1))
= Ed1(λp. λg

′. (man(g′(d1)) ∧ p(g′)) ; λp′′. λg′′. (walk(g′′(d1)) ∧ p′′(g′′)))
= Ed1λp

′. [λp. λg′. (man(g′(d1)) ∧ p(g′))]([λp′′. λg′′. (walk(g′′(d1)) ∧ p′′(g′′))](p′))
= Ed1λp

′. λg′. (man(g′(d1)) ∧ [λg′′. (walk(g′′(d1)) ∧ p′(g′′))](g′))
= Ed1λp

′. λg′. (man(g′(d1)) ∧ walk(g′(d1)) ∧ p′(g′))
= λp. λg. ∃x[λp′. λg′. (man(g′(d1)) ∧ walk(g′(d1)) ∧ p′(g′))](p)({x/d1}g)
= λp. λg. ∃x[λg′. (man(g′(d1)) ∧ walk(g′(d1)) ∧ p(g′))]({x/d1}g)
= λp. λg. ∃x(man({x/d1}g(d1)) ∧ walk({x/d1}g(d1)) ∧ p({x/d1}g))
= λp. λg. ∃x(man(x) ∧ walk(x) ∧ p({x/d1}g))

f(he1 talks) = [λQ.Q(d1)](λd. λp. λg. (talk(g(d)) ∧ p(g)))
= [λd. λp. λg. (talk(g(d)) ∧ p(g))](d1)
= λp. λg. (talk(g(d1)) ∧ p(g))

f(a1 man walks. he1 talks) = f(a1 man walks) ; f(he1 talks)
= λp. [λp′. λg. ∃x(man(x) ∧ walk(x) ∧ p′({x/d1}g))]([λp

′′. λg′′. (talk(g′′(d1)) ∧ p′′(g′′))](p))
= λp. [λp′. λg. ∃x(man(x) ∧ walk(x) ∧ p′({x/d1}g))](λg

′′. (talk(g′′(d1)) ∧ p(g′′)))
= λp. λg. ∃x(man(x) ∧ walk(x) ∧ [λg′′. (talk(g′′(d1)) ∧ p(g′′))]({x/d1}g))
= λp. λg. ∃x(man(x) ∧ walk(x) ∧ talk({x/d1}g(d1)) ∧ p({x/d1}g))
= λp. λg. ∃x(man(x) ∧ walk(x) ∧ talk(x) ∧ p({x/d1}g))

|= f(a1 man walks. he1 talks)
⇔ ↓f(a1 man walks. he1 talks) = [λg.⊤]
⇔ [λg. ∃x(man(x) ∧ walk(x) ∧ talk(x))] = [λg.⊤]
⇔ ∀g(∃x(man(x) ∧ walk(x) ∧ talk(x)) ↔ ⊤)
⇔ ∃x(man(x) ∧ walk(x) ∧ talk(x))

References

[vE98] Jan van Eijck. 1998. Axiomatizing dynamic logics for anaphora. Uni-
versiteit van Amsterdam, ILLC preprint series #LP-1998-07.

[GS82] Jeroen Groenendijk and Martin Stokhof. 1982. Semantic analysis of
wh-complements. Linguistics & Philosophy 5.

[GS90] Jeroen Groenendijk and Martin Stokhof. 1990. Dynamic Montague
Grammar.

[GS91] Jeroen Groenendijk and Martin Stokhof. 1991. Dynamic Predicate
Logic. Linguistics & Philosophy 14.

[H82] Irene R. Heim. 1982. The semantics of definite and indefinite noun
phrases. UMass Amherst dissertation.

12


