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ABSTRACT

Adding punctuation and capitalization greatly improves the
readability of automatic speech transcripts. We discuss an
approach for performing both tasks in a single pass using a
purely text-based n-gram languagemodel. We study the effect
on performance of varying the n-gram order (from n = 3 to
n = 6) and the amount of training data (from 58 million to
55 billion tokens). Our results show that using larger training
data sets consistently improves performance, while increasing
the n-gram order does not help nearly as much.

Index Terms— Speech recognition, punctuation, capital-
ization.

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) systems
still produce raw word streams that, even with no recognition
errors, are often difficult to read—not only for humans, but
also for natural language processing tools, which usually ex-
pect formatted text as input. Issues that need to be addressed
include formatting numbers, dates and places, removing dis-
fluencies, inserting punctuation symbols, and correctly cap-
italizing all words. To illustrate this problem, consider the
following excerpt of a broadcast news transcript, along with
its formatted version:

to simulate the terrain of mars scientists put the
rover in hawaii’s kilauea volcano the kids sit two
thousand four hundred miles away at the nasa
ames research center in mountain view california

To simulate the terrain of Mars, scientists put
the rover in Hawaii’s Kilauea volcano. The kids
sit 2400 miles away at the NASA Ames Research
Center in Mountain View, CA.

In this work, we limit the problem scope to restoring punctu-
ation symbols and capitalization in ASR output in English.

∗Work done during an internship at Google Inc.

Previous studies on punctuation restoration have exper-
imented with data-driven techniques for annotating tran-
scribed speech with sentence boundaries alone [1, 2, 3],
and with sentence boundaries and other punctuation symbols,
predominantly commas and question marks [4, 5, 6, 7, 8].
Capitalization recovery has been explored with various meth-
ods for statistical machine translation [9, 10], but has received
much less attention for enriching transcribed speech [5].
From these works, it is clear that models that exploit

textual and acoustic/prosodic information significantly out-
perform purely text-based models. However, the availability
of massive amounts of written data, together with unceasing
progress in computational power and storage capacity, pose
the question of the extent to which text-based models may be
improved when increasing both the training data size and the
n-gram order. The textual models used in the mentioned stud-
ies are typically based on word bigrams or trigrams trained on
corpora with not more than a few million tokens. This study
is aimed at assessing the impact on performance of scaling
those two dimensions: we trained and evaluated a series of
n-gram language models, systematically varying the n-gram
order (from n = 3 to n = 6) and the size of the training data
set (from 58 million to 55 billion tokens of written English).
The rest of the paper is organized as follows: Section 2 de-

scribes the corpora used for training and evaluation; Section 3
outlines the method for training and testing the language mod-
els; Section 4 summarizes the results; and Section 5 presents
some conclusions and possible directions of future work.

2. MATERIALS

The training data were taken from a collection of Internet
news articles gathered over several years up to June 2007,
whose English portion contains 55 billion tokens (including
punctuation symbols). We used two corpora as evaluation
data: one consisting of written news articles, to test our mod-
els in the same conditions in which they were trained, and one
consisting of broadcast news transcripts, to evaluate how the
models generalize to transcribed speech. The written news
articles were taken from the Wall Street Journal (WSJ) por-
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tion of the Penn Treebank 3 corpus,1 with 1.3 million tokens
from 1989 Wall Street Journal articles. The broadcast news
(BN) data were taken from the 1996 CSR HUB4 corpus,2 col-
lected between January 1992 and April 1996, with 39 million
tokens. There is neither textual nor temporal overlap between
the three corpora.
All three corpora were conditioned in the same manner,

replacing numeric strings (dates, dollar amounts, numeric
quantities) with orthographic strings (e.g. June 1996 becomes
June nineteen ninety six, $250 becomes two hundred and
fifty dollars), replacing abbreviations with corresponding
full-word forms (e.g. Dr. Roberts becomes Doctor Roberts,
Pivet Dr. becomes Pivet Drive), and replacing punctuation
characters with corresponding word tokens (e.g. ‘,’ becomes
‘,COMMA’). The two evaluation corpora had unequal distri-
butions of number of sentences per document, which could
bias the results in favor of the corpus with shorter documents.
To control for this factor, we subsampled the two corpora to
create test sets in which document length was uniformly dis-
tributed between 5 and 20 sentences per document. Finally,
we removed all punctuation symbols.

3. METHOD

Our objective is to insert both punctuation and capitalization
at once, in one single pass. Consistent with what has been re-
ported in previous studies, the most frequent punctuation sym-
bols in all three corpora are, by far, commas and periods, ac-
counting for 40-47% and 31-40% of all symbols, respectively.
In consequence, the natural first approach was to consider just
these two symbols, either ignoring other symbols, or collaps-
ing them with these two. Additionally, we considered a sec-
ond symbol set, with commas, periods, question marks and
dashes, aimed at studying the performance of the language
model on lower frequency symbols. Table 1 shows the rules
we defined for converting punctuation characters into either
two or four symbols; other symbols, such as quotes, slashes
and hyphens, were removed from the data. These transforma-
tions were applied to both training and test data.

Original punctuation characters Replacement
(a) (b) symbol

, ( ) -- , ,COMMA
: ; ! . ? ... : ; ! . .PERIOD

? ?Q-MARK
( ) ... -- --DASH

Table 1: Conversion tables from original punctuation
characters into (a) two or (b) four punctuation symbols.

Let wL1 = (w1, ...,wL) denote a string of L tokens over a
fixed vocabulary. An n-gram language model assigns a prob-

1 Treebank-3 (LDC99T42), Linguistic Data Consortium, 1999.
2 1996 CSR HUB4 Language Model (LDC98T31); Linguistic Data Con-

sortium, 1998.

ability to wL1 according to Pr
(
wL1

)
= ∏L

i=1 Pr
(
wi|wi−11

)
≈

∏L
i=1 Pr

(
wi|wi−1i−n+1

)
, where the approximation reflects a

Markov assumption that only the most recent n− 1 tokens
are relevant when predicting the next token. We trained a
series of large-scale n-gram models using the distributed
infrastructure described in [11]. The models employ the
smoothing technique known as stupid backoff, which helps
avoid a very costly backoff weight computation and which
has been shown to work just as well as correct backoff [11].
These language model scores are not probabilities anymore,
but retain certain aspects of negative log probabilities.
After training such a language model, it may be used to

restore capitalization and punctuation with the following pro-
cedure.3 Given an uncapitalized, unpunctuated sequence of
words w1, ...,wL, we define a hyper-string FSA (this construc-
tion can be generalized to take word lattices as input) as a
finite state automaton (FSA) with:

• two states si and ti for each word wi (1≤ i≤ L);
• one extra state sL+1;
• one arc from si to ti emitting word wi capitalized, and
one arc emitting wi uncapitalized (1≤ i≤ L);

• one arc from ti to si+1 emitting each of the punctua-
tion symbols being considered, and one arc emitting
the empty string ε (1≤ i≤ L).

The only initial state is s1, and the only final state is sL+1.
Thus, a hyper-string FSA accepts not only the original word
sequence, but also all of its possible combinations of punc-
tuations and capitalizations. Figure 1 shows the hyper-string
FSA corresponding to the string “mars scientists”, taken
from the example presented in the Introduction.

Fig. 1: Hyper-string FSA with all combinations of
punctuation and capitalization for “mars scientists”.

The distributed infrastructure mentioned above provides
an interface for treating the language model as a weighted
FSA, where each arc emits a token (word or punctuation sym-
bol) with a certain cost. We then compose the languagemodel
and the hyper-string FSA. The result of this composition is
an FSA that compactly represents all strings accepted by the
hyper-string FSA together with their language model scores.
A final decoding step computes the least cost path along the
composed FSA, which is equivalent to the maximum poste-
rior probability sequence of punctuation symbols and capital-
ized/uncapitalized words according to the language model. In

3 In this work we address the problem of capitalizing only the initial letter,
leaving other cases, such as NASA or LaTeX, for future research.
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Test corpus: BN. Considering (a) two, (b) four punctuation symbols.
Size Capit. ,COMMA .PERIOD –DASH ?QMARK

(a)

58M .80 .72 .45 .32 .55 .39
330M .81 .77 .45 .41 .56 .48
3.6B .82 .80 .47 .50 .59 .57
55B .83 .83 .48 .56 .61 .64

(b)

58M .81 .71 .47 .32 .50 .40 .01 .02 .43 .08
330M .81 .76 .47 .41 .51 .47 .01 .03 .46 .13
3.6B .82 .80 .48 .50 .53 .55 .01 .04 .46 .18
55B .83 .83 .49 .55 .56 .60 .01 .06 .47 .24

Test corpus: WSJ. Considering (a) two, (b) four punctuation symbols.
Size Capit. ,COMMA .PERIOD –DASH ?QMARK

(a)

58M .87 .75 .54 .40 .58 .36
330M .88 .81 .55 .51 .60 .45
3.6B .88 .86 .55 .62 .63 .55
55B .89 .88 .55 .68 .65 .62

(b)

58M .87 .75 .57 .40 .59 .38 .02 .06 .20 .04
330M .88 .81 .56 .50 .60 .47 .03 .10 .25 .07
3.6B .89 .86 .56 .61 .63 .56 .04 .17 .33 .11
55B .89 .88 .57 .67 .65 .63 .04 .21 .29 .15

(i) (ii)
Fig. 2: (i) Precision, recall and (ii) F-score of 5-grams trained on data sets of varying size (58 million to 55 billion tokens).

the example above, a satisfactory answer in its context would
be “Mars ,COMMA scientists ε”.

4. RESULTS AND DISCUSSION

To assess the impact on performance of the amount of train-
ing data available, we prepared four data sets with varying
numbers of tokens, each with a different order of magnitude:
58 million, 330 million, 3.6 billion and 55 billion. We trained
a 5-gram model for each data set, considering either two or
four punctuation symbols (as explained in the previous sec-
tion), and evaluated the trained models on the BN and WSJ
corpora. Figure 2 summarizes the results; the table on the left
lists precision and recall of each capitalization and punctua-
tion decision; the chart on the right shows a visual representa-
tion of the corresponding F-scores.4 In all cases, increasing
the size of the training data set consistently improved the per-
formance of the language models; both precision and recall
increased log-linearly with respect to the amount of training
data available, without leveling off. Larger amounts of train-
ing data would presumably further increase performance.
Next, we trained a series of language models varying the

maximum order of the n-grams, from n= 3 to n= 6, to inves-
tigate how this affected performance. We used a fixed train-
ing data set with 3.6 billion tokens, and again considered both
two and four punctuation symbols. Figure 3 summarizes the
results, with all precision and recall scores listed on the left,
and F-scores plotted on the right. The BN corpus has a vo-
cabulary of 38 million words (OOV rate 0.2%); WSJ has 1.3
million words (OOV rate 0.1%). For both corpora n-gram cov-
erage for the highest-order n-grams is shown in the column la-
beled “Covrg.” Whereas n-gram coverage remains substantial

4 Computed as F = 2 ·precision · recall / (precision+ recall).

as n increases, the quality of capitalization and period restora-
tion is flat, presumably because the important clues are highly
local and adequately captured by trigrams.
When taking four punctuation symbols into account, peri-

ods and commas were inserted much more reliably than the
other two. For question marks, the low performance confirms
that n-gram models are too simple, and do not capture long
range syntactic information needed to distinguish statements
from questions: e.g. “scientists put the rover in Hawaii’s Ki-
lauea volcano” ends in a period, but simply prefixing it with
“why did” would make a question mark more appropriate.

Looking at differences across corpora, all models per-
formed better on written news articles (WSJ) than on broad-
cast news reference transcripts (BN). Question marks are an
exception, for which the results were better on BN. Although
further analysis of the two corpora revealed no significant dif-
ferences in the distributions of question lengths, we did find
that BN questions have a much higher frequency of common
endings, such as ‘is that correct?’, ‘do you think?’ or ‘didn’t
you?’, than WSJ questions. While n-grams may model un-
bounded questions poorly, they are still able to handle these
cases correctly, which may explain why question marks are
predicted more accurately on BN data.
All language models performed poorly on dashes—

probably due to the imprecise definition of this symbol,
typically used to indicate a break in the flow of a sentence.
Ellipses and parentheses (which were combined with dashes
into one symbol) also present high variability in their usage,
further complicating the task.
Capitalization restoration was unaffected by the choice of

two or four punctuation symbols, and achieved good results,
with precision and recall approaching the 0.9 level. Since
some capitalization decisions are tied to insertions of sentence
boundaries, we further analyzed the types of capitalization er-
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Test corpus: BN. Considering (a) two, (b) four punctuation symbols.
Order Capit. ,COMMA .PERIOD –DASH ?QMARK Covrg.

(a)

n= 3 .82 .81 .49 .37 .58 .58 83%
n= 4 .81 .81 .46 .49 .58 .58 53%
n= 5 .82 .80 .47 .50 .59 .57 25%
n= 6 .83 .80 .48 .47 .61 .54 9%

(b)

n= 3 .82 .80 .50 .37 .52 .56 .01 .02 .41 .15 82%
n= 4 .82 .81 .47 .48 .52 .56 .01 .04 .43 .18 51%
n= 5 .82 .80 .48 .50 .53 .55 .01 .04 .46 .18 24%
n= 6 .83 .79 .49 .46 .55 .52 .01 .04 .49 .17 8%

Test corpus: WSJ. Considering (a) two, (b) four punctuation symbols.
Order Capit. ,COMMA .PERIOD –DASH ?QMARK Covrg.

(a)

n= 3 .88 .86 .57 .52 .61 .57 78%
n= 4 .88 .86 .53 .62 .61 .57 49%
n= 5 .88 .86 .55 .62 .63 .55 25%
n= 6 .89 .85 .58 .58 .65 .52 12%

(b)

n= 3 .88 .86 .58 .52 .61 .58 .03 .12 .27 .08 77%
n= 4 .88 .86 .55 .61 .61 .58 .04 .16 .27 .11 48%
n= 5 .89 .86 .56 .61 .63 .56 .04 .17 .33 .11 25%
n= 6 .90 .85 .59 .57 .65 .53 .04 .16 .35 .11 12%

(i) (ii)
Fig. 3: (i) Precision, recall and (ii) F-score of n-grams of varying order (3 to 6), trained on a 3.6-billion-token data set.

rors. Table 2 shows the distribution of such errors made by
the 5-gram language model with two punctuation symbols
trained on 55 billion tokens, when applied to the WSJ and
BN corpora. The first column shows the expected combina-
tions of punctuation and capitalization; the second column,
the decisions made by the model. The two upper rows corre-
spond to genuine capitalization errors, while the two lower
rows combine punctuation and capitalization errors. Note
that, for both corpora, the latter represented the majority of
all capitalization errors; therefore, further improvements in

Expected Predicted WSJ BN
foo Foo 15% 10%
Foo foo 19% 14%
foo .Foo 33% 41%
.Foo foo 32% 34%

Table 2: Distribution of capitalization error types.

punctuation insertion should lead to significant improvements
in capitalization restoration.

5. CONCLUSIONS AND FUTUREWORK

We have presented an approach to punctuation and capital-
ization restoration using purely text-based n-gram language
models. Our results suggest that using larger training data
sets leads to consistent improvements in performance, while
increasing the n-gram order does not help nearly as much.
Furthermore, we show that low-frequency symbols such as
question marks and dashes are much harder to model using
simple n-grams than commas and periods.
A natural direction to continue this research is to com-

bine the text-based models presented here with more complex

models described in the literature, which include other tex-
tual features (e.g. part-of-speech and shallow syntactic infor-
mation), as well as acoustic/prosodic features from the audio
signal (e.g. pause duration and word final intonation).
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